

Direct Carrier Modulation for Wireless Digital Communications Using an Improved Microwave-Photonic Vector Modulator (MPVM) Approach

Soumya Chandramouli, William D. Jemison, Eric Funk*

Department of ECE, Lafayette College, Easton, PA, 18042

*Naval Research Laboratory, Washington, D.C, 20375

Abstract — This paper presents a demonstration of direct carrier modulation via the use of an improved microwave/photonic vector modulator (MPVM). This modulation approach is suitable for direct digital modulation of microwave and millimeter-wave signals and allows for tuning of the carrier frequency over wide bandwidths and dynamic reconfiguration of the modulation format. An all-optical control approach is used to achieve faster data rates and better carrier tune-ability than previously reported work in this area. Specifically, experimental results showing direct QPSK and 16-QAM modulation of carrier frequencies between 1.0 and 2.0 GHz with data rates to 8 Mbs are presented.

I. INTRODUCTION

Conventional carrier modulation systems employ in-phase (I) and quadrature (Q) processing to achieve M-ary phase shift keying (m -PSK) and quadrature amplitude modulation (m -QAM). This I-Q processing typically requires the use of multiple up-conversions to the desired microwave or millimeter wave carrier frequency. Each of the up-conversions and its associated filtering requirements introduces complexity and imposes bandwidth limitations on the overall system. Direct carrier modulation using electronic or photonic vector modulation has advantages over traditional carrier modulation approaches using I-Q processing and multiple up-conversions [1-4]. Jemison, *et. al.* have recently demonstrated direct carrier modulation using a microwave/photonic vector modulator (MPVM) [5]. In this previous work, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK) and 16-quadrature amplitude modulation (16-QAM) were demonstrated at a carrier frequency of 1.0 GHz. The data rates achieved in this previous work were limited by the following: 1) the use of a bias-tee to combine band-limited data and the carrier frequency in a single electrode MZM configuration, 2) the limited response time of the electronic microwave attenuators used for vector amplitude control, and 3) the speed of the prototype digital control circuit. Similarly, the carrier tune-ability of the previous system was limited

by the bandwidth of the electronic microwave attenuators. This paper presents several significant improvements over the previous MPVM work by implementing an all-optical control approach to achieve higher data rates and wideband carrier tune-ability.

II. SYSTEM DESCRIPTION

The system block diagram is shown in Figure 1 and consists of a control circuit and the microwave photonic vector modulator (MPVM). The control circuit accepts a binary serial data stream from a HP8018A serial data source and generates the control signals for the MPVM. Control circuit functions include serial to parallel conversion, Gray-coding of the data, and providing proper MZM interface signal levels.

The MPVM directly modulates a microwave carrier signal, $S_{in}(t)$, based on the data encoded by the control signals. Two quadrature vectors, $S_I(t)$ and $S_Q(t)$, are obtained by splitting the carrier signal in a 90 degree microwave power divider. These signals are then applied to separate MZMs. The MZMs are Lucent 10 GHz 2624C (MZM 1 and 3) and 2623CSA (MZM 2 and 4) LiNbO₃ devices. These are driven by Lucent D2500 semiconductor lasers operated at 1.55 μ m with a nominal optical power level of 2 mW. All four quadrants of the desired signal space can be accessed by using a combination of amplitude shift keying (ASK) and BPSK on the quadrature vectors. Each quadrature vector may be rotated 180 degrees from its initial state (*i.e.* BPSK) by changing the control signal voltage on MZMs 2 and 4 from $+V_{\pi}/2$ to $-V_{\pi}/2$. The amplitude of each quadrature vector may then be adjusted (*i.e.* ASK) by controlling the optical attenuation via MZMs 1 and 3. It should be noted that only MZMs 2 and 4 are required to operate at the carrier frequency since the function of MZMs 1 and 3 is to provide vector length modulation (ASK) at the symbol rate. The optical signals are then combined in a 3 dB optical power combiner. A high-speed photodetector is used to recover the modulated microwave signal, $S_{out}(t)$.

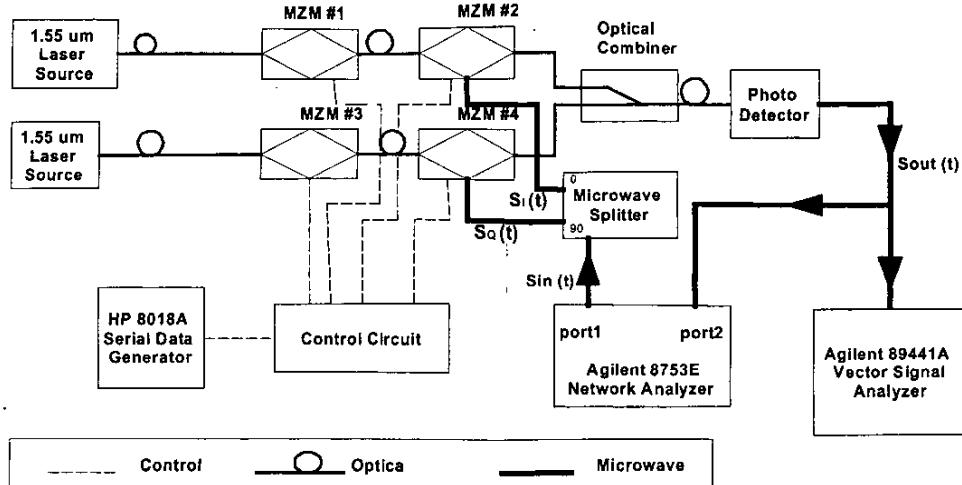


Figure 1. System block diagram

The output of the photodetector may then be amplified and used for wireless data transmission.

In the case of QPSK modulation, the signal has a constant envelope. Thus, the vector length is constant and ASK of the quadrature vectors is not required. This allows QPSK to be generated with only two MZMs. 16-QAM has a variable envelope, but requires only two vector lengths to achieve all signal constellation points. Therefore, 16-QAM can be achieved via a combination of BPSK on the first pair of MZMs and binary ASK applied to the second pair of MZMs. The decomposition of 16-QAM into two independent binary modulation types makes the control signal generation for 16-QAM convenient and simple.

III. EXPERIMENTAL RESULTS

The system was experimentally tested using QPSK and 16-QAM modulation. Experiments are presented to quantify: 1) basic system functionality and data transmission quality, and 2) wideband operation.

A. Basic Functionality and Data Transmission Quality

The purpose of this testing was to show that the MPVM can generate high-quality digitally modulated signals using multiple modulation formats. Figures 2 and 3 show the constellation diagrams and transmission statistics measured on an 89441A vector signal analyzer for QPSK and 16-QAM modulation at 1 Mbps using a $2^{20}-1$ pseudo-random bit sequence (PRBS). The carrier frequency was 1.5 GHz in each case.

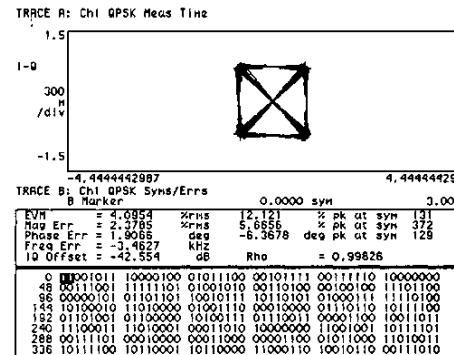


Figure 2. Constellation Diagram and Transmission Statistics for QPSK

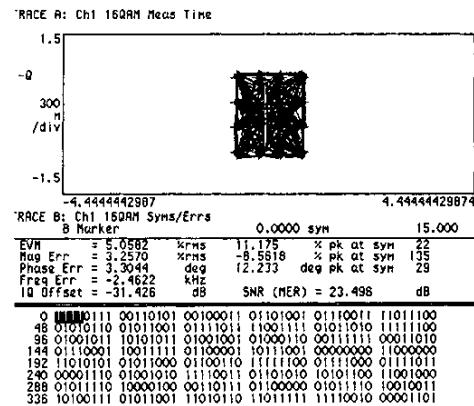


Figure 3. Constellation Diagram and Transmission Statistics for 16-QAM

Figure 4 shows the spectrum of the 1 Mbps (250 kSymbols/sec) 16-QAM signal. The main lobe width correlates exactly with the symbol rate and a well-defined sidelobe structure was obtained since no baseband data filtering was applied. Optimal filtering of the MPVM control signals for minimizing intersymbol interference (ISI) and providing spectral control needs to be addressed in future work.

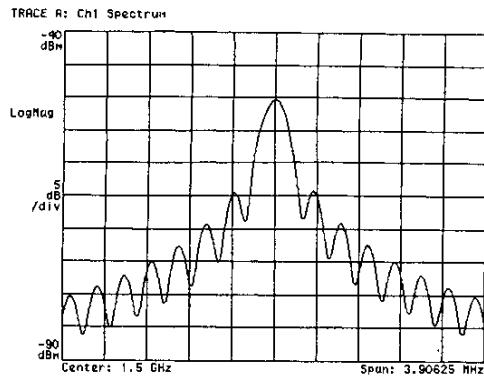


Figure 4. Spectrum of 1 Mbps 16-QAM (no MPVM baseband filtering)

Figure 5 shows the measured Error Vector Magnitude (EVM) for the QPSK and 16-QAM signals as a function of symbol rate. The EVM provides a quantitative measure of modulation performance [6].

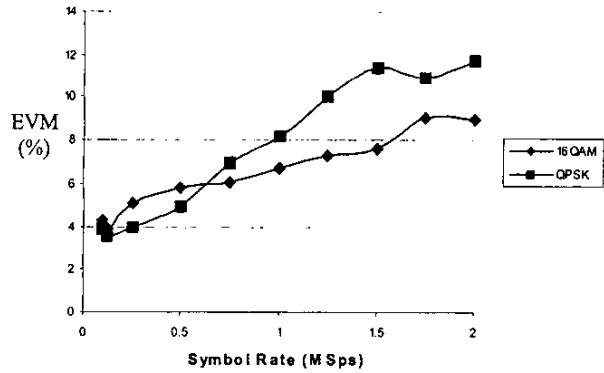


Figure 5. EVM vs. Symbol Rate for QPSK and 16-QAM using a $2^{20}-1$ pseudo-random bit sequence (PRBS)

These data rates are more than one order of magnitude higher than the data rate achieved previously [5]. Thus, the speed limitations associated with single-port MZMs and the digital attenuator in the previous MPVM have been eliminated. The control circuit remains the only

significant data-rate limiting factor and an improved implementation should extend the MPVM performance above 100 Mbps.

B. Wideband Testing

The purpose of this testing was to quantify the MPVM performance over the full design bandwidth of 1.0 – 2.0 GHz. This bandwidth was selected based on microwave component and test equipment availability. However, it should be noted that, since the 2623CSA MZMs operate to 18 GHz, the system easily can be reconfigured to support operation in dc – 18 GHz range by changing the microwave power divider and using a higher speed photodetector.

The MPVM system was calibrated at 1.5 GHz to minimize quadrature phase error and amplitude imbalance. The phase error and amplitude imbalance of each quadrature vector (*i.e.* 0, 90, 180, and 270 degrees) were then measured over the full system bandwidth. The results are shown in Figures 6 and 7. Results for all four of the signal vectors are shown on each graph.

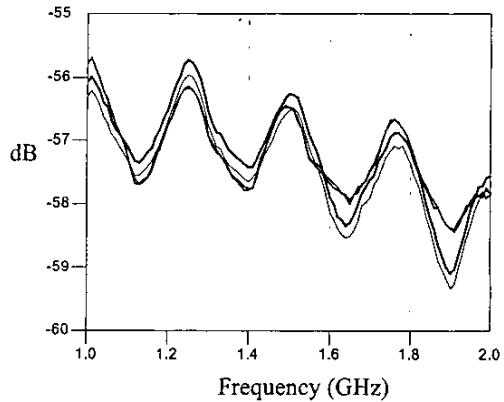


Figure 6. MPVM Quadrature Amplitude Error

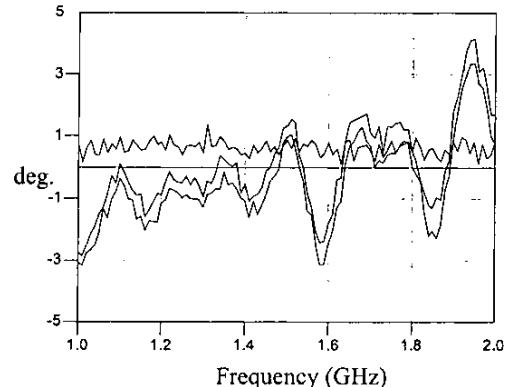


Figure 7. MPVM Quadrature Phase Error

At the 1.5 GHz calibration frequency, the maximum amplitude and relative phase error between any two adjacent quadrature vectors is less than +/- 0.15 dB and +/- 0.65 degrees, respectively. The maximum amplitude and relative phase error at any other frequency in the band is +/- 0.47 dB at 1.9 GHz and +/- 2 degrees at 1.95 GHz, respectively. The maximum amplitude phase variation across the full octave bandwidth, is less than +/- 1.81 dB and +/- 3.5 degrees, respectively. Large magnitude and phase deviations are evident outside the 1.0-2.0 GHz frequency range (not shown), however, this is expected since the 90 degree microwave power divider used in this work is designed for 1.0-2.0 GHz. In fact, most of the amplitude and phase error of the MPVM can be traced to the microwave power divider performance and input VSWR of the MZMs. However, these results are still excellent and the MPVM may be used over the full octave bandwidth. Table 1 shows the measured EVM performance of the 1 Mbs 16-QAM at several points across the frequency band. The results indicate that the EVM is less than 5.4% over the design bandwidth. The 10% EVM at 2.2 GHz occurs at a frequency outside the design bandwidth. Given this wideband performance, the carrier frequency could be tuned or dynamically hopped over this octave bandwidth in order to support multiple wireless bands or frequency hopped or chirped spread spectrum.

TABLE I
16 QAM EVM AT 1 MBS

RF Frequency (GHz)	EVM (%)
1.1	5.1
1.5	5.1
1.8	5.4
2.0	5.2
2.2	10.0

IV. CONCLUSION

This paper presents an experimental demonstration of direct carrier modulation via the use of a microwave/photonics vector modulator. Specifically, experimental results were presented that demonstrate full-functionality, octave-band operation for QPSK and 16-QAM modulation. Since photonic components can be designed to operate over extremely wide bandwidths [7], this direct modulation approach is suitable for direct digital modulation of microwave and millimeter-wave signals and allows for both tuning of the carrier frequency

over wide bandwidths and dynamic reconfiguration of the modulation format. The results presented demonstrate significantly higher data rates and better carrier tunability than previously reported work in this area [5]. These improvements were achieved using an all-optical control method that eliminates most of the performance barriers associated with the previous MPVM approach. While four MZMs are used in this demonstration, only two of them are required to operate at the carrier frequency as the remaining two are used for intensity control at the symbol rate. Multiple MZMs may be realized in integrated optics to simultaneously increase performance and significantly reduce the size and cost of the MPVM. Alternatively, the use of direct laser modulation or electroabsorptive modulators may be used to provide the intensity control required for vector length control.

ACKNOWLEDGEMENT

The authors acknowledge Mr. Andrew Kreuzberger and Dr. Arthur Paoella for providing some of the optical components required to conduct this work. The authors also wish to acknowledge the support of the IEEE MTT-S Undergraduate Scholarship program and the Lafayette College EXCEL scholar program for the support of Ms. Chandramouli's work.

REFERENCES

- [1] S. Kumar "Directly Modulated VSAT Transmitters," *Microwave J.*, pp. 255-264, 1990.
- [2] Nabeel A. Riza "Analog Vector Modulation-Based Widely Tunable Frequency Photonic Beamformer for Phased-Array Antennas," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 45, pp. 1508-1512, 1997..
- [3] D. S. McPherson, H. Seo, Y. Jing, S. Lucyszyn, "110 GHz Vector Modulator for Adaptive Software-Controlled Transmitters," *IEEE Microwave and Wireless Components Letters*, vol. 11, no. 01, pp. 16-18, Jan. 2001.
- [4] S. T. Winnal, A.C. Lindsay, "A Wide-Band Microwave Photonic Phase and Frequency Shifter," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 45, No 6, pp. 1003-1006, June 1997.
- [5] W. D. Jemison, A. J. Kreuzberger, E. Funk, "Microwave Photonic Vector Modulator for High-Speed Digital Communications", accepted for publication in *IEEE Microwave and Wireless Components Letters*.
- [6] "Using Error Vector Magnitude Measurements to Analyze and Troubleshoot Vector-Modulated Signals," *Agilent Product Note PN 89400-14*.
- [7] K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti: LiNbO₃ optical modulators," *J. Lightwave Tech.*, vol. 16, pp. 615-617, April 1998.